Zebra/zebra-chain/src/transaction/serialize.rs

836 lines
33 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Contains impls of `ZcashSerialize`, `ZcashDeserialize` for all of the
//! transaction types, so that all of the serialization logic is in one place.
use std::{convert::TryInto, io, sync::Arc};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use halo2::{arithmetic::FieldExt, pasta::pallas};
use crate::{
amount,
block::MAX_BLOCK_BYTES,
parameters::{OVERWINTER_VERSION_GROUP_ID, SAPLING_VERSION_GROUP_ID, TX_V5_VERSION_GROUP_ID},
primitives::{
redpallas::{Binding, Signature, SpendAuth},
Groth16Proof, Halo2Proof, ZkSnarkProof,
},
serialization::{
zcash_deserialize_external_count, zcash_serialize_empty_list,
zcash_serialize_external_count, AtLeastOne, ReadZcashExt, SerializationError,
TrustedPreallocate, ZcashDeserialize, ZcashDeserializeInto, ZcashSerialize,
},
sprout,
};
use super::*;
use sapling::{Output, SharedAnchor, Spend};
impl ZcashDeserialize for jubjub::Fq {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let possible_scalar = jubjub::Fq::from_bytes(&reader.read_32_bytes()?);
if possible_scalar.is_some().into() {
Ok(possible_scalar.unwrap())
} else {
Err(SerializationError::Parse(
"Invalid jubjub::Fq, input not canonical",
))
}
}
}
impl ZcashDeserialize for pallas::Scalar {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let possible_scalar = pallas::Scalar::from_bytes(&reader.read_32_bytes()?);
if possible_scalar.is_some().into() {
Ok(possible_scalar.unwrap())
} else {
Err(SerializationError::Parse(
"Invalid pallas::Scalar, input not canonical",
))
}
}
}
impl ZcashDeserialize for pallas::Base {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let possible_field_element = pallas::Base::from_bytes(&reader.read_32_bytes()?);
if possible_field_element.is_some().into() {
Ok(possible_field_element.unwrap())
} else {
Err(SerializationError::Parse(
"Invalid pallas::Base, input not canonical",
))
}
}
}
impl<P: ZkSnarkProof> ZcashSerialize for JoinSplitData<P> {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
let joinsplits: Vec<_> = self.joinsplits().cloned().collect();
joinsplits.zcash_serialize(&mut writer)?;
writer.write_all(&<[u8; 32]>::from(self.pub_key)[..])?;
writer.write_all(&<[u8; 64]>::from(self.sig)[..])?;
Ok(())
}
}
impl<P> ZcashDeserialize for Option<JoinSplitData<P>>
where
P: ZkSnarkProof,
sprout::JoinSplit<P>: TrustedPreallocate,
{
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let joinsplits: Vec<sprout::JoinSplit<P>> = (&mut reader).zcash_deserialize_into()?;
match joinsplits.split_first() {
None => Ok(None),
Some((first, rest)) => {
let pub_key = reader.read_32_bytes()?.into();
let sig = reader.read_64_bytes()?.into();
Ok(Some(JoinSplitData {
first: first.clone(),
rest: rest.to_vec(),
pub_key,
sig,
}))
}
}
}
}
// Transaction::V5 serializes sapling ShieldedData in a single continuous byte
// range, so we can implement its serialization and deserialization separately.
// (Unlike V4, where it must be serialized as part of the transaction.)
impl ZcashSerialize for Option<sapling::ShieldedData<SharedAnchor>> {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
match self {
None => {
// nSpendsSapling
zcash_serialize_empty_list(&mut writer)?;
// nOutputsSapling
zcash_serialize_empty_list(&mut writer)?;
}
Some(sapling_shielded_data) => {
sapling_shielded_data.zcash_serialize(&mut writer)?;
}
}
Ok(())
}
}
impl ZcashSerialize for sapling::ShieldedData<SharedAnchor> {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
// Collect arrays for Spends
// There's no unzip3, so we have to unzip twice.
let (spend_prefixes, spend_proofs_sigs): (Vec<_>, Vec<_>) = self
.spends()
.cloned()
.map(sapling::Spend::<SharedAnchor>::into_v5_parts)
.map(|(prefix, proof, sig)| (prefix, (proof, sig)))
.unzip();
let (spend_proofs, spend_sigs) = spend_proofs_sigs.into_iter().unzip();
// Collect arrays for Outputs
let (output_prefixes, output_proofs): (Vec<_>, _) =
self.outputs().cloned().map(Output::into_v5_parts).unzip();
// nSpendsSapling and vSpendsSapling
spend_prefixes.zcash_serialize(&mut writer)?;
// nOutputsSapling and vOutputsSapling
output_prefixes.zcash_serialize(&mut writer)?;
// valueBalanceSapling
self.value_balance.zcash_serialize(&mut writer)?;
// anchorSapling
// `TransferData` ensures this field is only present when there is at
// least one spend.
if let Some(shared_anchor) = self.shared_anchor() {
writer.write_all(&<[u8; 32]>::from(shared_anchor)[..])?;
}
// vSpendProofsSapling
zcash_serialize_external_count(&spend_proofs, &mut writer)?;
// vSpendAuthSigsSapling
zcash_serialize_external_count(&spend_sigs, &mut writer)?;
// vOutputProofsSapling
zcash_serialize_external_count(&output_proofs, &mut writer)?;
// bindingSigSapling
writer.write_all(&<[u8; 64]>::from(self.binding_sig)[..])?;
Ok(())
}
}
// we can't split ShieldedData out of Option<ShieldedData> deserialization,
// because the counts are read along with the arrays.
impl ZcashDeserialize for Option<sapling::ShieldedData<SharedAnchor>> {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
// nSpendsSapling and vSpendsSapling
let spend_prefixes: Vec<_> = (&mut reader).zcash_deserialize_into()?;
// nOutputsSapling and vOutputsSapling
let output_prefixes: Vec<_> = (&mut reader).zcash_deserialize_into()?;
// nSpendsSapling and nOutputsSapling as variables
let spends_count = spend_prefixes.len();
let outputs_count = output_prefixes.len();
// All the other fields depend on having spends or outputs
if spend_prefixes.is_empty() && output_prefixes.is_empty() {
return Ok(None);
}
// valueBalanceSapling
let value_balance = (&mut reader).zcash_deserialize_into()?;
// anchorSapling
//
// # Consensus
//
// > Elements of a Spend description MUST be valid encodings of the types given above.
//
// https://zips.z.cash/protocol/protocol.pdf#spenddesc
//
// Type is `B^{[_{Sapling}_{Merkle}]}`, i.e. 32 bytes
let shared_anchor = if spends_count > 0 {
Some(reader.read_32_bytes()?.into())
} else {
None
};
// vSpendProofsSapling
//
// # Consensus
//
// > Elements of a Spend description MUST be valid encodings of the types given above.
//
// https://zips.z.cash/protocol/protocol.pdf#spenddesc
//
// Type is `ZKSpend.Proof`, described in
// https://zips.z.cash/protocol/protocol.pdf#grothencoding
// It is not enforced here; this just reads 192 bytes.
// The type is validated when validating the proof, see
// [`groth16::Item::try_from`]. In #3179 we plan to validate here instead.
let spend_proofs = zcash_deserialize_external_count(spends_count, &mut reader)?;
// vSpendAuthSigsSapling
//
// # Consensus
//
// > Elements of a Spend description MUST be valid encodings of the types given above.
//
// https://zips.z.cash/protocol/protocol.pdf#spenddesc
//
// Type is SpendAuthSig^{Sapling}.Signature, i.e.
// B^Y^{[ceiling(_G/8) + ceiling(bitlength(𝑟_G)/8)]} i.e. 64 bytes
// https://zips.z.cash/protocol/protocol.pdf#concretereddsa
// See [`redjubjub::Signature<SpendAuth>::zcash_deserialize`].
let spend_sigs = zcash_deserialize_external_count(spends_count, &mut reader)?;
// vOutputProofsSapling
let output_proofs = zcash_deserialize_external_count(outputs_count, &mut reader)?;
// bindingSigSapling
let binding_sig = reader.read_64_bytes()?.into();
// Create shielded spends from deserialized parts
let spends: Vec<_> = spend_prefixes
.into_iter()
.zip(spend_proofs.into_iter())
.zip(spend_sigs.into_iter())
.map(|((prefix, proof), sig)| Spend::<SharedAnchor>::from_v5_parts(prefix, proof, sig))
.collect();
// Create shielded outputs from deserialized parts
let outputs = output_prefixes
.into_iter()
.zip(output_proofs.into_iter())
.map(|(prefix, proof)| Output::from_v5_parts(prefix, proof))
.collect();
// Create transfers
//
// # Consensus
//
// > The anchor of each Spend description MUST refer to some earlier
// > blocks final Sapling treestate. The anchor is encoded separately
// > in each Spend description for v4 transactions, or encoded once and
// > shared between all Spend descriptions in a v5 transaction.
//
// <https://zips.z.cash/protocol/protocol.pdf#spendsandoutputs>
//
// This rule is also implemented in
// [`zebra_state::service::check::anchor`] and
// [`zebra_chain::sapling::spend`].
//
// The "anchor encoding for v5 transactions" is implemented here.
let transfers = match shared_anchor {
Some(shared_anchor) => sapling::TransferData::SpendsAndMaybeOutputs {
shared_anchor,
spends: spends
.try_into()
.expect("checked spends when parsing shared anchor"),
maybe_outputs: outputs,
},
None => sapling::TransferData::JustOutputs {
outputs: outputs
.try_into()
.expect("checked spends or outputs and returned early"),
},
};
Ok(Some(sapling::ShieldedData {
value_balance,
transfers,
binding_sig,
}))
}
}
impl ZcashSerialize for Option<orchard::ShieldedData> {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
match self {
None => {
// nActionsOrchard
zcash_serialize_empty_list(writer)?;
// We don't need to write anything else here.
// "The fields flagsOrchard, valueBalanceOrchard, anchorOrchard, sizeProofsOrchard,
// proofsOrchard , and bindingSigOrchard are present if and only if nActionsOrchard > 0."
// https://zips.z.cash/protocol/nu5.pdf#txnencodingandconsensus notes of the second
// table, section sign.
}
Some(orchard_shielded_data) => {
orchard_shielded_data.zcash_serialize(&mut writer)?;
}
}
Ok(())
}
}
impl ZcashSerialize for orchard::ShieldedData {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
// Split the AuthorizedAction
let (actions, sigs): (Vec<orchard::Action>, Vec<Signature<SpendAuth>>) = self
.actions
.iter()
.cloned()
.map(orchard::AuthorizedAction::into_parts)
.unzip();
// nActionsOrchard and vActionsOrchard
actions.zcash_serialize(&mut writer)?;
// flagsOrchard
self.flags.zcash_serialize(&mut writer)?;
// valueBalanceOrchard
self.value_balance.zcash_serialize(&mut writer)?;
// anchorOrchard
self.shared_anchor.zcash_serialize(&mut writer)?;
// sizeProofsOrchard and proofsOrchard
self.proof.zcash_serialize(&mut writer)?;
// vSpendAuthSigsOrchard
zcash_serialize_external_count(&sigs, &mut writer)?;
// bindingSigOrchard
self.binding_sig.zcash_serialize(&mut writer)?;
Ok(())
}
}
// we can't split ShieldedData out of Option<ShieldedData> deserialization,
// because the counts are read along with the arrays.
impl ZcashDeserialize for Option<orchard::ShieldedData> {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
// nActionsOrchard and vActionsOrchard
let actions: Vec<orchard::Action> = (&mut reader).zcash_deserialize_into()?;
// "sizeProofsOrchard ... [is] present if and only if nActionsOrchard > 0"
// https://zips.z.cash/protocol/nu5.pdf#txnencodingandconsensus
if actions.is_empty() {
return Ok(None);
}
// flagsOrchard
let flags: orchard::Flags = (&mut reader).zcash_deserialize_into()?;
// valueBalanceOrchard
let value_balance: amount::Amount = (&mut reader).zcash_deserialize_into()?;
// anchorOrchard
let shared_anchor: orchard::tree::Root = (&mut reader).zcash_deserialize_into()?;
// sizeProofsOrchard and proofsOrchard
let proof: Halo2Proof = (&mut reader).zcash_deserialize_into()?;
// vSpendAuthSigsOrchard
let sigs: Vec<Signature<SpendAuth>> =
zcash_deserialize_external_count(actions.len(), &mut reader)?;
// bindingSigOrchard
let binding_sig: Signature<Binding> = (&mut reader).zcash_deserialize_into()?;
// Create the AuthorizedAction from deserialized parts
let authorized_actions: Vec<orchard::AuthorizedAction> = actions
.into_iter()
.zip(sigs.into_iter())
.map(|(action, spend_auth_sig)| {
orchard::AuthorizedAction::from_parts(action, spend_auth_sig)
})
.collect();
let actions: AtLeastOne<orchard::AuthorizedAction> = authorized_actions.try_into()?;
Ok(Some(orchard::ShieldedData {
flags,
value_balance,
shared_anchor,
proof,
actions,
binding_sig,
}))
}
}
impl ZcashSerialize for Transaction {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
// Post-Sapling, transaction size is limited to MAX_BLOCK_BYTES.
// (Strictly, the maximum transaction size is about 1.5 kB less,
// because blocks also include a block header.)
//
// Currently, all transaction structs are parsed as part of a
// block. So we don't need to check transaction size here, until
// we start parsing mempool transactions, or generating our own
// transactions (see #483).
//
// Since we checkpoint on Canopy activation, we won't ever need
// to check the smaller pre-Sapling transaction size limit.
// header: Write version and set the fOverwintered bit if necessary
let overwintered_flag = if self.is_overwintered() { 1 << 31 } else { 0 };
let version = overwintered_flag | self.version();
writer.write_u32::<LittleEndian>(version)?;
match self {
Transaction::V1 {
inputs,
outputs,
lock_time,
} => {
inputs.zcash_serialize(&mut writer)?;
outputs.zcash_serialize(&mut writer)?;
lock_time.zcash_serialize(&mut writer)?;
}
Transaction::V2 {
inputs,
outputs,
lock_time,
joinsplit_data,
} => {
inputs.zcash_serialize(&mut writer)?;
outputs.zcash_serialize(&mut writer)?;
lock_time.zcash_serialize(&mut writer)?;
match joinsplit_data {
// Write 0 for nJoinSplits to signal no JoinSplitData.
None => zcash_serialize_empty_list(writer)?,
Some(jsd) => jsd.zcash_serialize(&mut writer)?,
}
}
Transaction::V3 {
inputs,
outputs,
lock_time,
expiry_height,
joinsplit_data,
} => {
writer.write_u32::<LittleEndian>(OVERWINTER_VERSION_GROUP_ID)?;
inputs.zcash_serialize(&mut writer)?;
outputs.zcash_serialize(&mut writer)?;
lock_time.zcash_serialize(&mut writer)?;
writer.write_u32::<LittleEndian>(expiry_height.0)?;
match joinsplit_data {
// Write 0 for nJoinSplits to signal no JoinSplitData.
None => zcash_serialize_empty_list(writer)?,
Some(jsd) => jsd.zcash_serialize(&mut writer)?,
}
}
Transaction::V4 {
inputs,
outputs,
lock_time,
expiry_height,
sapling_shielded_data,
joinsplit_data,
} => {
writer.write_u32::<LittleEndian>(SAPLING_VERSION_GROUP_ID)?;
inputs.zcash_serialize(&mut writer)?;
outputs.zcash_serialize(&mut writer)?;
lock_time.zcash_serialize(&mut writer)?;
writer.write_u32::<LittleEndian>(expiry_height.0)?;
// The previous match arms serialize in one go, because the
// internal structure happens to nicely line up with the
// serialized structure. However, this is not possible for
// version 4 transactions, as the binding_sig for the
// ShieldedData is placed at the end of the transaction. So
// instead we have to interleave serialization of the
// ShieldedData and the JoinSplitData.
match sapling_shielded_data {
None => {
// Signal no value balance.
writer.write_i64::<LittleEndian>(0)?;
// Signal no shielded spends and no shielded outputs.
zcash_serialize_empty_list(&mut writer)?;
zcash_serialize_empty_list(&mut writer)?;
}
Some(sapling_shielded_data) => {
sapling_shielded_data
.value_balance
.zcash_serialize(&mut writer)?;
let spends: Vec<_> = sapling_shielded_data.spends().cloned().collect();
spends.zcash_serialize(&mut writer)?;
let outputs: Vec<_> = sapling_shielded_data
.outputs()
.cloned()
.map(sapling::OutputInTransactionV4)
.collect();
outputs.zcash_serialize(&mut writer)?;
}
}
match joinsplit_data {
None => zcash_serialize_empty_list(&mut writer)?,
Some(jsd) => jsd.zcash_serialize(&mut writer)?,
}
match sapling_shielded_data {
Some(sd) => writer.write_all(&<[u8; 64]>::from(sd.binding_sig)[..])?,
None => {}
}
}
Transaction::V5 {
network_upgrade,
lock_time,
expiry_height,
inputs,
outputs,
sapling_shielded_data,
orchard_shielded_data,
} => {
// Transaction V5 spec:
// https://zips.z.cash/protocol/nu5.pdf#txnencodingandconsensus
writer.write_u32::<LittleEndian>(TX_V5_VERSION_GROUP_ID)?;
// header: Write the nConsensusBranchId
writer.write_u32::<LittleEndian>(u32::from(
network_upgrade
.branch_id()
.expect("valid transactions must have a network upgrade with a branch id"),
))?;
// transaction validity time and height limits
lock_time.zcash_serialize(&mut writer)?;
writer.write_u32::<LittleEndian>(expiry_height.0)?;
// transparent
inputs.zcash_serialize(&mut writer)?;
outputs.zcash_serialize(&mut writer)?;
// sapling
sapling_shielded_data.zcash_serialize(&mut writer)?;
// orchard
orchard_shielded_data.zcash_serialize(&mut writer)?;
}
}
Ok(())
}
}
impl ZcashDeserialize for Transaction {
fn zcash_deserialize<R: io::Read>(reader: R) -> Result<Self, SerializationError> {
// # Consensus
//
// > [Pre-Sapling] The encoded size of the transaction MUST be less than or
// > equal to 100000 bytes.
//
// https://zips.z.cash/protocol/protocol.pdf#txnconsensus
//
// Zebra does not verify this rule because we checkpoint up to Canopy blocks, but:
// Since transactions must get mined into a block to be useful,
// we reject transactions that are larger than blocks.
//
// If the limit is reached, we'll get an UnexpectedEof error.
let mut limited_reader = reader.take(MAX_BLOCK_BYTES);
let (version, overwintered) = {
const LOW_31_BITS: u32 = (1 << 31) - 1;
let header = limited_reader.read_u32::<LittleEndian>()?;
(header & LOW_31_BITS, header >> 31 != 0)
};
// # Consensus
//
// The next rules apply for different transaction versions as follows:
//
// [Pre-Overwinter]: Transactions version 1 and 2.
// [Overwinter onward]: Transactions version 3 and above.
// [Overwinter only, pre-Sapling]: Transactions version 3.
// [Sapling to Canopy inclusive, pre-NU5]: Transactions version 4.
// [NU5 onward]: Transactions version 4 and above.
//
// > The transaction version number MUST be greater than or equal to 1.
//
// > [Pre-Overwinter] The fOverwintered fag MUST NOT be set.
//
// > [Overwinter onward] The version group ID MUST be recognized.
//
// > [Overwinter onward] The fOverwintered flag MUST be set.
//
// > [Overwinter only, pre-Sapling] The transaction version number MUST be 3,
// > and the version group ID MUST be 0x03C48270.
//
// > [Sapling to Canopy inclusive, pre-NU5] The transaction version number MUST be 4,
// > and the version group ID MUST be 0x892F2085.
//
// > [NU5 onward] The transaction version number MUST be 4 or 5.
// > If the transaction version number is 4 then the version group ID MUST be 0x892F2085.
// > If the transaction version number is 5 then the version group ID MUST be 0x26A7270A.
//
// Note: Zebra checkpoints until Canopy blocks, this means only transactions versions
// 4 and 5 get fully verified. This satisfies "The transaction version number MUST be 4"
// and "The transaction version number MUST be 4 or 5" from the last two rules above.
// This is done in the zebra-consensus crate, in the transactions checks.
//
// https://zips.z.cash/protocol/protocol.pdf#txnconsensus
match (version, overwintered) {
(1, false) => Ok(Transaction::V1 {
inputs: Vec::zcash_deserialize(&mut limited_reader)?,
outputs: Vec::zcash_deserialize(&mut limited_reader)?,
lock_time: LockTime::zcash_deserialize(&mut limited_reader)?,
}),
(2, false) => {
// Version 2 transactions use Sprout-on-BCTV14.
type OptV2Jsd = Option<JoinSplitData<Bctv14Proof>>;
Ok(Transaction::V2 {
inputs: Vec::zcash_deserialize(&mut limited_reader)?,
outputs: Vec::zcash_deserialize(&mut limited_reader)?,
lock_time: LockTime::zcash_deserialize(&mut limited_reader)?,
joinsplit_data: OptV2Jsd::zcash_deserialize(&mut limited_reader)?,
})
}
(3, true) => {
let id = limited_reader.read_u32::<LittleEndian>()?;
if id != OVERWINTER_VERSION_GROUP_ID {
return Err(SerializationError::Parse(
"expected OVERWINTER_VERSION_GROUP_ID",
));
}
// Version 3 transactions use Sprout-on-BCTV14.
type OptV3Jsd = Option<JoinSplitData<Bctv14Proof>>;
Ok(Transaction::V3 {
inputs: Vec::zcash_deserialize(&mut limited_reader)?,
outputs: Vec::zcash_deserialize(&mut limited_reader)?,
lock_time: LockTime::zcash_deserialize(&mut limited_reader)?,
expiry_height: block::Height(limited_reader.read_u32::<LittleEndian>()?),
joinsplit_data: OptV3Jsd::zcash_deserialize(&mut limited_reader)?,
})
}
(4, true) => {
let id = limited_reader.read_u32::<LittleEndian>()?;
if id != SAPLING_VERSION_GROUP_ID {
return Err(SerializationError::Parse(
"expected SAPLING_VERSION_GROUP_ID",
));
}
// Version 4 transactions use Sprout-on-Groth16.
type OptV4Jsd = Option<JoinSplitData<Groth16Proof>>;
// The previous match arms deserialize in one go, because the
// internal structure happens to nicely line up with the
// serialized structure. However, this is not possible for
// version 4 transactions, as the binding_sig for the
// ShieldedData is placed at the end of the transaction. So
// instead we have to pull the component parts out manually and
// then assemble them.
let inputs = Vec::zcash_deserialize(&mut limited_reader)?;
let outputs = Vec::zcash_deserialize(&mut limited_reader)?;
let lock_time = LockTime::zcash_deserialize(&mut limited_reader)?;
let expiry_height = block::Height(limited_reader.read_u32::<LittleEndian>()?);
let value_balance = (&mut limited_reader).zcash_deserialize_into()?;
let shielded_spends = Vec::zcash_deserialize(&mut limited_reader)?;
let shielded_outputs =
Vec::<sapling::OutputInTransactionV4>::zcash_deserialize(&mut limited_reader)?
.into_iter()
.map(Output::from_v4)
.collect();
let joinsplit_data = OptV4Jsd::zcash_deserialize(&mut limited_reader)?;
let sapling_transfers = if !shielded_spends.is_empty() {
Some(sapling::TransferData::SpendsAndMaybeOutputs {
shared_anchor: FieldNotPresent,
spends: shielded_spends.try_into().expect("checked for spends"),
maybe_outputs: shielded_outputs,
})
} else if !shielded_outputs.is_empty() {
Some(sapling::TransferData::JustOutputs {
outputs: shielded_outputs.try_into().expect("checked for outputs"),
})
} else {
// # Consensus
//
// > [Sapling onward] If effectiveVersion = 4 and there are no Spend
// > descriptions or Output descriptions, then valueBalanceSapling MUST be 0.
//
// https://zips.z.cash/protocol/protocol.pdf#txnconsensus
if value_balance != 0 {
return Err(SerializationError::BadTransactionBalance);
}
None
};
let sapling_shielded_data = match sapling_transfers {
Some(transfers) => Some(sapling::ShieldedData {
value_balance,
transfers,
binding_sig: limited_reader.read_64_bytes()?.into(),
}),
None => None,
};
Ok(Transaction::V4 {
inputs,
outputs,
lock_time,
expiry_height,
sapling_shielded_data,
joinsplit_data,
})
}
(5, true) => {
let id = limited_reader.read_u32::<LittleEndian>()?;
if id != TX_V5_VERSION_GROUP_ID {
return Err(SerializationError::Parse("expected TX_V5_VERSION_GROUP_ID"));
}
// convert the nConsensusBranchId to a NetworkUpgrade
let network_upgrade =
NetworkUpgrade::from_branch_id(limited_reader.read_u32::<LittleEndian>()?)
.ok_or(SerializationError::Parse(
"expected a valid network upgrade from the consensus branch id",
))?;
// transaction validity time and height limits
let lock_time = LockTime::zcash_deserialize(&mut limited_reader)?;
let expiry_height = block::Height(limited_reader.read_u32::<LittleEndian>()?);
// transparent
let inputs = Vec::zcash_deserialize(&mut limited_reader)?;
let outputs = Vec::zcash_deserialize(&mut limited_reader)?;
// sapling
let sapling_shielded_data = (&mut limited_reader).zcash_deserialize_into()?;
// orchard
let orchard_shielded_data = (&mut limited_reader).zcash_deserialize_into()?;
Ok(Transaction::V5 {
network_upgrade,
lock_time,
expiry_height,
inputs,
outputs,
sapling_shielded_data,
orchard_shielded_data,
})
}
(_, _) => Err(SerializationError::Parse("bad tx header")),
}
}
}
impl<T> ZcashDeserialize for Arc<T>
where
T: ZcashDeserialize,
{
fn zcash_deserialize<R: io::Read>(reader: R) -> Result<Self, SerializationError> {
Ok(Arc::new(T::zcash_deserialize(reader)?))
}
}
impl<T> ZcashSerialize for Arc<T>
where
T: ZcashSerialize,
{
fn zcash_serialize<W: io::Write>(&self, writer: W) -> Result<(), io::Error> {
T::zcash_serialize(self, writer)
}
}
/// A Tx Input must have an Outpoint (32 byte hash + 4 byte index), a 4 byte sequence number,
/// and a signature script, which always takes a min of 1 byte (for a length 0 script).
pub(crate) const MIN_TRANSPARENT_INPUT_SIZE: u64 = 32 + 4 + 4 + 1;
/// A Transparent output has an 8 byte value and script which takes a min of 1 byte.
pub(crate) const MIN_TRANSPARENT_OUTPUT_SIZE: u64 = 8 + 1;
/// All txs must have at least one input, a 4 byte locktime, and at least one output.
///
/// Shielded transfers are much larger than transparent transfers,
/// so this is the minimum transaction size.
pub(crate) const MIN_TRANSPARENT_TX_SIZE: u64 =
MIN_TRANSPARENT_INPUT_SIZE + 4 + MIN_TRANSPARENT_OUTPUT_SIZE;
/// No valid Zcash message contains more transactions than can fit in a single block
///
/// `tx` messages contain a single transaction, and `block` messages are limited to the maximum
/// block size.
impl TrustedPreallocate for Transaction {
fn max_allocation() -> u64 {
// A transparent transaction is the smallest transaction variant
MAX_BLOCK_BYTES / MIN_TRANSPARENT_TX_SIZE
}
}
/// The maximum number of inputs in a valid Zcash on-chain transaction.
///
/// If a transaction contains more inputs than can fit in maximally large block, it might be
/// valid on the network and in the mempool, but it can never be mined into a block. So
/// rejecting these large edge-case transactions can never break consensus.
impl TrustedPreallocate for transparent::Input {
fn max_allocation() -> u64 {
MAX_BLOCK_BYTES / MIN_TRANSPARENT_INPUT_SIZE
}
}
/// The maximum number of outputs in a valid Zcash on-chain transaction.
///
/// If a transaction contains more outputs than can fit in maximally large block, it might be
/// valid on the network and in the mempool, but it can never be mined into a block. So
/// rejecting these large edge-case transactions can never break consensus.
impl TrustedPreallocate for transparent::Output {
fn max_allocation() -> u64 {
MAX_BLOCK_BYTES / MIN_TRANSPARENT_OUTPUT_SIZE
}
}