Zebra/zebra-chain/src/block/tests.rs

419 lines
14 KiB
Rust

use super::*;
use crate::block::{difficulty::CompactDifficulty, light_client::LightClientRootHash};
use crate::equihash_solution::EquihashSolution;
use crate::merkle_tree::MerkleTreeRootHash;
use crate::serialization::{
sha256d, SerializationError, ZcashDeserialize, ZcashDeserializeInto, ZcashSerialize,
};
use crate::transaction::LockTime;
use crate::Network;
use crate::test::generate;
use chrono::{DateTime, Duration, LocalResult, TimeZone, Utc};
use proptest::{
arbitrary::{any, Arbitrary},
prelude::*,
test_runner::Config,
};
use std::env;
use std::io::{Cursor, ErrorKind, Write};
impl Arbitrary for LightClientRootHash {
type Parameters = ();
fn arbitrary_with(_args: ()) -> Self::Strategy {
(any::<[u8; 32]>(), any::<Network>(), any::<BlockHeight>())
.prop_map(|(light_client_root_bytes, network, block_height)| {
LightClientRootHash::from_bytes(light_client_root_bytes, network, block_height)
})
.boxed()
}
type Strategy = BoxedStrategy<Self>;
}
impl Arbitrary for BlockHeader {
type Parameters = ();
fn arbitrary_with(_args: ()) -> Self::Strategy {
(
// version is interpreted as i32 in the spec, so we are limited to i32::MAX here
(4u32..(i32::MAX as u32)),
any::<BlockHeaderHash>(),
any::<MerkleTreeRootHash>(),
any::<[u8; 32]>(),
// time is interpreted as u32 in the spec, but rust timestamps are i64
(0i64..(u32::MAX as i64)),
any::<CompactDifficulty>(),
any::<[u8; 32]>(),
any::<EquihashSolution>(),
)
.prop_map(
|(
version,
previous_block_hash,
merkle_root_hash,
light_client_root_bytes,
timestamp,
difficulty_threshold,
nonce,
solution,
)| BlockHeader {
version,
previous_block_hash,
merkle_root_hash,
light_client_root_bytes,
time: Utc.timestamp(timestamp, 0),
difficulty_threshold,
nonce,
solution,
},
)
.boxed()
}
type Strategy = BoxedStrategy<Self>;
}
#[test]
fn blockheaderhash_debug() {
let preimage = b"foo bar baz";
let mut sha_writer = sha256d::Writer::default();
let _ = sha_writer.write_all(preimage);
let hash = BlockHeaderHash(sha_writer.finish());
assert_eq!(
format!("{:?}", hash),
"BlockHeaderHash(\"bf46b4b5030752fedac6f884976162bbfb29a9398f104a280b3e34d51b416631\")"
);
}
#[test]
fn blockheaderhash_from_blockheader() {
let blockheader = generate::block_header();
let hash = BlockHeaderHash::from(&blockheader);
assert_eq!(
format!("{:?}", hash),
"BlockHeaderHash(\"39c92b8c6b582797830827c78d58674c7205fcb21991887c124d1dbe4b97d6d1\")"
);
let mut bytes = Cursor::new(Vec::new());
blockheader
.zcash_serialize(&mut bytes)
.expect("these bytes to serialize from a blockheader without issue");
bytes.set_position(0);
let other_header = bytes
.zcash_deserialize_into()
.expect("these bytes to deserialize into a blockheader without issue");
assert_eq!(blockheader, other_header);
}
#[test]
fn deserialize_blockheader() {
// https://explorer.zcha.in/blocks/415000
let _header = zebra_test::vectors::HEADER_MAINNET_415000_BYTES
.zcash_deserialize_into::<BlockHeader>()
.expect("blockheader test vector should deserialize");
}
#[test]
fn deserialize_block() {
zebra_test::vectors::BLOCK_MAINNET_GENESIS_BYTES
.zcash_deserialize_into::<Block>()
.expect("block test vector should deserialize");
zebra_test::vectors::BLOCK_MAINNET_1_BYTES
.zcash_deserialize_into::<Block>()
.expect("block test vector should deserialize");
// https://explorer.zcha.in/blocks/415000
zebra_test::vectors::BLOCK_MAINNET_415000_BYTES
.zcash_deserialize_into::<Block>()
.expect("block test vector should deserialize");
// https://explorer.zcha.in/blocks/434873
// this one has a bad version field
zebra_test::vectors::BLOCK_MAINNET_434873_BYTES
.zcash_deserialize_into::<Block>()
.expect("block test vector should deserialize");
}
#[test]
fn block_limits_multi_tx() {
// Test multiple small transactions to fill a block max size
// Create a block just below the limit
let mut block = generate::large_multi_transaction_block();
// Serialize the block
let mut data = Vec::new();
block
.zcash_serialize(&mut data)
.expect("block should serialize as we are not limiting generation yet");
assert!(data.len() <= MAX_BLOCK_BYTES as usize);
// Deserialize by now is ok as we are lower than the limit
let block2 = Block::zcash_deserialize(&data[..])
.expect("block should deserialize as we are just below limit");
assert_eq!(block, block2);
// Add 1 more transaction to the block, limit will be reached
block = generate::oversized_multi_transaction_block();
// Serialize will still be fine
let mut data = Vec::new();
block
.zcash_serialize(&mut data)
.expect("block should serialize as we are not limiting generation yet");
assert!(data.len() > MAX_BLOCK_BYTES as usize);
// Deserialize will now fail
Block::zcash_deserialize(&data[..]).expect_err("block should not deserialize");
}
#[test]
fn block_limits_single_tx() {
// Test block limit with a big single transaction
// Create a block just below the limit
let mut block = generate::large_single_transaction_block();
// Serialize the block
let mut data = Vec::new();
block
.zcash_serialize(&mut data)
.expect("block should serialize as we are not limiting generation yet");
assert!(data.len() <= MAX_BLOCK_BYTES as usize);
// Deserialize by now is ok as we are lower than the limit
Block::zcash_deserialize(&data[..])
.expect("block should deserialize as we are just below limit");
// Add 1 more input to the transaction, limit will be reached
block = generate::oversized_single_transaction_block();
let mut data = Vec::new();
block
.zcash_serialize(&mut data)
.expect("block should serialize as we are not limiting generation yet");
assert!(data.len() > MAX_BLOCK_BYTES as usize);
// Will fail as block overall size is above limit
Block::zcash_deserialize(&data[..]).expect_err("block should not deserialize");
}
proptest! {
#[test]
fn blockheaderhash_roundtrip(hash in any::<BlockHeaderHash>()) {
let bytes = hash.zcash_serialize_to_vec()?;
let other_hash: BlockHeaderHash = bytes.zcash_deserialize_into()?;
prop_assert_eq![hash, other_hash];
}
#[test]
fn blockheader_roundtrip(header in any::<BlockHeader>()) {
let bytes = header.zcash_serialize_to_vec()?;
let other_header = bytes.zcash_deserialize_into()?;
prop_assert_eq![header, other_header];
}
#[test]
fn light_client_roundtrip(bytes in any::<[u8; 32]>(), network in any::<Network>(), block_height in any::<BlockHeight>()) {
let light_hash = LightClientRootHash::from_bytes(bytes, network, block_height);
let other_bytes = light_hash.to_bytes();
prop_assert_eq![bytes, other_bytes];
}
}
proptest! {
// The block roundtrip test can be really slow, so we use fewer cases by
// default. Set the PROPTEST_CASES env var to override this default.
#![proptest_config(Config::with_cases(env::var("PROPTEST_CASES")
.ok()
.and_then(|v| v.parse().ok())
.unwrap_or(16)))]
#[test]
fn block_roundtrip(block in any::<Block>(), network in any::<Network>()) {
let bytes = block.zcash_serialize_to_vec()?;
let bytes = &mut bytes.as_slice();
// Check the light client root hash
let light_hash = block.light_client_root_hash(network);
if let Some(light_hash) = light_hash {
let light_hash_bytes = light_hash.to_bytes();
prop_assert_eq![block.header.light_client_root_bytes, light_hash_bytes];
} else {
prop_assert_eq![block.coinbase_height(), None];
}
// Check the block size limit
if bytes.len() <= MAX_BLOCK_BYTES as _ {
// Check deserialization
let other_block = bytes.zcash_deserialize_into()?;
prop_assert_eq![block, other_block];
} else {
let serialization_err = bytes.zcash_deserialize_into::<Block>()
.expect_err("blocks larger than the maximum size should fail");
match serialization_err {
SerializationError::Io(io_err) => {
prop_assert_eq![io_err.kind(), ErrorKind::UnexpectedEof];
}
_ => {
prop_assert!(false,
"blocks larger than the maximum size should fail with an io::Error");
}
}
}
}
}
#[test]
fn time_check_past_block() {
// This block is also verified as part of the BlockVerifier service
// tests.
let block =
Arc::<Block>::zcash_deserialize(&zebra_test::vectors::BLOCK_MAINNET_415000_BYTES[..])
.expect("block should deserialize");
let now = Utc::now();
// This check is non-deterministic, but BLOCK_MAINNET_415000 is
// a long time in the past. So it's unlikely that the test machine
// will have a clock that's far enough in the past for the test to
// fail.
block
.header
.is_time_valid_at(now)
.expect("the header time from a mainnet block should be valid");
}
/// Test wrapper for `BlockHeader.is_time_valid_at`.
///
/// Generates a block header, sets its `time` to `block_header_time`, then
/// calls `is_time_valid_at`.
fn node_time_check(block_header_time: DateTime<Utc>, now: DateTime<Utc>) -> Result<(), Error> {
let mut header = generate::block_header();
header.time = block_header_time;
header.is_time_valid_at(now)
}
#[test]
fn time_check_now() {
// These checks are deteministic, because all the times are offset
// from the current time.
let now = Utc::now();
let three_hours_in_the_past = now - Duration::hours(3);
let two_hours_in_the_future = now + Duration::hours(2);
let two_hours_and_one_second_in_the_future = now + Duration::hours(2) + Duration::seconds(1);
node_time_check(now, now).expect("the current time should be valid as a block header time");
node_time_check(three_hours_in_the_past, now)
.expect("a past time should be valid as a block header time");
node_time_check(two_hours_in_the_future, now)
.expect("2 hours in the future should be valid as a block header time");
node_time_check(two_hours_and_one_second_in_the_future, now)
.expect_err("2 hours and 1 second in the future should be invalid as a block header time");
// Now invert the tests
// 3 hours in the future should fail
node_time_check(now, three_hours_in_the_past)
.expect_err("3 hours in the future should be invalid as a block header time");
// The past should succeed
node_time_check(now, two_hours_in_the_future)
.expect("2 hours in the past should be valid as a block header time");
node_time_check(now, two_hours_and_one_second_in_the_future)
.expect("2 hours and 1 second in the past should be valid as a block header time");
}
/// Valid unix epoch timestamps for blocks, in seconds
static BLOCK_HEADER_VALID_TIMESTAMPS: &[i64] = &[
// These times are currently invalid DateTimes, but they could
// become valid in future chrono versions
i64::MIN,
i64::MIN + 1,
// These times are valid DateTimes
(i32::MIN as i64) - 1,
(i32::MIN as i64),
(i32::MIN as i64) + 1,
-1,
0,
1,
LockTime::MIN_TIMESTAMP - 1,
LockTime::MIN_TIMESTAMP,
LockTime::MIN_TIMESTAMP + 1,
];
/// Invalid unix epoch timestamps for blocks, in seconds
static BLOCK_HEADER_INVALID_TIMESTAMPS: &[i64] = &[
(i32::MAX as i64) - 1,
(i32::MAX as i64),
(i32::MAX as i64) + 1,
LockTime::MAX_TIMESTAMP - 1,
LockTime::MAX_TIMESTAMP,
LockTime::MAX_TIMESTAMP + 1,
// These times are currently invalid DateTimes, but they could
// become valid in future chrono versions
i64::MAX - 1,
i64::MAX,
];
#[test]
fn time_check_fixed() {
// These checks are non-deterministic, but the times are all in the
// distant past or far future. So it's unlikely that the test
// machine will have a clock that makes these tests fail.
let now = Utc::now();
for valid_timestamp in BLOCK_HEADER_VALID_TIMESTAMPS {
let block_header_time = match Utc.timestamp_opt(*valid_timestamp, 0) {
LocalResult::Single(time) => time,
LocalResult::None => {
// Skip the test if the timestamp is invalid
continue;
}
LocalResult::Ambiguous(_, _) => {
// Utc doesn't have ambiguous times
unreachable!();
}
};
node_time_check(block_header_time, now)
.expect("the time should be valid as a block header time");
// Invert the check, leading to an invalid time
node_time_check(now, block_header_time)
.expect_err("the inverse comparison should be invalid");
}
for invalid_timestamp in BLOCK_HEADER_INVALID_TIMESTAMPS {
let block_header_time = match Utc.timestamp_opt(*invalid_timestamp, 0) {
LocalResult::Single(time) => time,
LocalResult::None => {
// Skip the test if the timestamp is invalid
continue;
}
LocalResult::Ambiguous(_, _) => {
// Utc doesn't have ambiguous times
unreachable!();
}
};
node_time_check(block_header_time, now)
.expect_err("the time should be invalid as a block header time");
// Invert the check, leading to a valid time
node_time_check(now, block_header_time).expect("the inverse comparison should be valid");
}
}