Zebra/zebra-chain/src/transaction/shielded_data.rs

361 lines
11 KiB
Rust

use std::{fmt, io};
use futures::future::Either;
#[cfg(test)]
use proptest::{arbitrary::Arbitrary, array, collection::vec, prelude::*};
#[cfg(test)]
use proptest_derive::Arbitrary;
// XXX this name seems too long?
use crate::note_commitment_tree::SaplingNoteTreeRootHash;
use crate::proofs::Groth16Proof;
use crate::redjubjub::{self, Binding, SpendAuth};
use crate::serialization::{SerializationError, ZcashDeserialize, ZcashSerialize};
/// A _Spend Description_, as described in [protocol specification §7.3][ps].
///
/// [ps]: https://zips.z.cash/protocol/protocol.pdf#spendencoding
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct SpendDescription {
/// A value commitment to the value of the input note.
///
/// XXX refine to a specific type.
pub cv: [u8; 32],
/// A root of the Sapling note commitment tree at some block height in the past.
pub anchor: SaplingNoteTreeRootHash,
/// The nullifier of the input note.
///
/// XXX refine to a specific type.
pub nullifier: [u8; 32],
/// The randomized public key for `spend_auth_sig`.
pub rk: redjubjub::PublicKeyBytes<SpendAuth>,
/// The ZK spend proof.
pub zkproof: Groth16Proof,
/// A signature authorizing this spend.
pub spend_auth_sig: redjubjub::Signature<SpendAuth>,
}
#[cfg(test)]
impl Arbitrary for SpendDescription {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
(
array::uniform32(any::<u8>()),
any::<SaplingNoteTreeRootHash>(),
array::uniform32(any::<u8>()),
array::uniform32(any::<u8>()),
any::<Groth16Proof>(),
vec(any::<u8>(), 64),
)
.prop_map(
|(cv_bytes, anchor, nullifier_bytes, rpk_bytes, proof, sig_bytes)| {
return Self {
cv: cv_bytes,
anchor: anchor,
nullifier: nullifier_bytes,
rk: redjubjub::PublicKeyBytes::from(rpk_bytes),
zkproof: proof,
spend_auth_sig: redjubjub::Signature::from({
let mut b = [0u8; 64];
b.copy_from_slice(sig_bytes.as_slice());
b
}),
};
},
)
.boxed()
}
type Strategy = BoxedStrategy<Self>;
}
/// A _Output Description_, as described in [protocol specification §7.4][ps].
///
/// [ps]: https://zips.z.cash/protocol/protocol.pdf#outputencoding
#[derive(Clone, Debug, PartialEq, Eq)]
#[cfg_attr(test, derive(Arbitrary))]
pub struct OutputDescription {
/// A value commitment to the value of the input note.
///
/// XXX refine to a specific type.
pub cv: [u8; 32],
/// The u-coordinate of the note commitment for the output note.
///
/// XXX refine to a specific type.
pub cmu: [u8; 32],
/// An encoding of an ephemeral Jubjub public key.
///
/// XXX refine to a Jubjub key agreement type, not RedJubjub.
pub ephemeral_key: [u8; 32],
/// A ciphertext component for the encrypted output note.
pub enc_ciphertext: EncryptedCiphertext,
/// A ciphertext component for the encrypted output note.
pub out_ciphertext: OutCiphertext,
/// The ZK output proof.
pub zkproof: Groth16Proof,
}
/// Sapling-on-Groth16 spend and output descriptions.
#[derive(Clone, Debug)]
pub struct ShieldedData {
/// Either a spend or output description.
///
/// Storing this separately ensures that it is impossible to construct
/// an invalid `ShieldedData` with no spends or outputs.
///
/// However, it's not necessary to access or process `first` and `rest`
/// separately, as the [`ShieldedData::spends`] and [`ShieldedData::outputs`]
/// methods provide iterators over all of the [`SpendDescription`]s and
/// [`OutputDescription`]s.
pub first: Either<SpendDescription, OutputDescription>,
/// The rest of the [`SpendDescription`]s for this transaction.
///
/// Note that the [`ShieldedData::spends`] method provides an iterator
/// over all spend descriptions.
pub rest_spends: Vec<SpendDescription>,
/// The rest of the [`OutputDescription`]s for this transaction.
///
/// Note that the [`ShieldedData::outputs`] method provides an iterator
/// over all output descriptions.
pub rest_outputs: Vec<OutputDescription>,
/// A signature on the transaction hash.
pub binding_sig: redjubjub::Signature<Binding>,
}
impl ShieldedData {
/// Iterate over the [`SpendDescription`]s for this transaction.
pub fn spends(&self) -> impl Iterator<Item = &SpendDescription> {
match self.first {
Either::Left(ref spend) => Some(spend),
Either::Right(_) => None,
}
.into_iter()
.chain(self.rest_spends.iter())
}
/// Iterate over the [`OutputDescription`]s for this transaction.
pub fn outputs(&self) -> impl Iterator<Item = &OutputDescription> {
match self.first {
Either::Left(_) => None,
Either::Right(ref output) => Some(output),
}
.into_iter()
.chain(self.rest_outputs.iter())
}
}
// Technically, it's possible to construct two equivalent representations
// of a ShieldedData with at least one spend and at least one output, depending
// on which goes in the `first` slot. This is annoying but a smallish price to
// pay for structural validity.
impl std::cmp::PartialEq for ShieldedData {
fn eq(&self, other: &Self) -> bool {
// First check that the lengths match, so we know it is safe to use zip,
// which truncates to the shorter of the two iterators.
if self.spends().count() != other.spends().count() {
return false;
}
if self.outputs().count() != other.outputs().count() {
return false;
}
// Now check that the binding_sig, spends, outputs match.
self.binding_sig == other.binding_sig
&& self.spends().zip(other.spends()).all(|(a, b)| a == b)
&& self.outputs().zip(other.outputs()).all(|(a, b)| a == b)
}
}
impl std::cmp::Eq for ShieldedData {}
#[cfg(test)]
impl Arbitrary for ShieldedData {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
(
prop_oneof![
any::<SpendDescription>().prop_map(Either::Left),
any::<OutputDescription>().prop_map(Either::Right)
],
vec(any::<SpendDescription>(), 0..10),
vec(any::<OutputDescription>(), 0..10),
vec(any::<u8>(), 64),
)
.prop_map(|(first, rest_spends, rest_outputs, sig)| {
return Self {
first: first,
rest_spends: rest_spends,
rest_outputs: rest_outputs,
binding_sig: redjubjub::Signature::from({
let mut b = [0u8; 64];
b.copy_from_slice(sig.as_slice());
b
}),
};
})
.boxed()
}
type Strategy = BoxedStrategy<Self>;
}
/// A ciphertext component for encrypted output notes.
// XXX move as part of #181 (note encryption implementation)
pub struct EncryptedCiphertext(pub [u8; 580]);
impl fmt::Debug for EncryptedCiphertext {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("EncryptedCiphertext")
.field(&hex::encode(&self.0[..]))
.finish()
}
}
// These impls all only exist because of array length restrictions.
impl Copy for EncryptedCiphertext {}
impl Clone for EncryptedCiphertext {
fn clone(&self) -> Self {
let mut bytes = [0; 580];
bytes[..].copy_from_slice(&self.0[..]);
Self(bytes)
}
}
impl PartialEq for EncryptedCiphertext {
fn eq(&self, other: &Self) -> bool {
self.0[..] == other.0[..]
}
}
impl Eq for EncryptedCiphertext {}
impl ZcashSerialize for EncryptedCiphertext {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), SerializationError> {
writer.write_all(&self.0[..])?;
Ok(())
}
}
impl ZcashDeserialize for EncryptedCiphertext {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let mut bytes = [0; 580];
reader.read_exact(&mut bytes[..])?;
Ok(Self(bytes))
}
}
#[cfg(test)]
impl Arbitrary for EncryptedCiphertext {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
(vec(any::<u8>(), 580))
.prop_map(|v| {
let mut bytes = [0; 580];
bytes.copy_from_slice(v.as_slice());
return Self(bytes);
})
.boxed()
}
type Strategy = BoxedStrategy<Self>;
}
/// A ciphertext component for encrypted output notes.
pub struct OutCiphertext(pub [u8; 80]);
impl fmt::Debug for OutCiphertext {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("OutCiphertext")
.field(&hex::encode(&self.0[..]))
.finish()
}
}
// These impls all only exist because of array length restrictions.
impl Copy for OutCiphertext {}
impl Clone for OutCiphertext {
fn clone(&self) -> Self {
let mut bytes = [0; 80];
bytes[..].copy_from_slice(&self.0[..]);
Self(bytes)
}
}
impl PartialEq for OutCiphertext {
fn eq(&self, other: &Self) -> bool {
self.0[..] == other.0[..]
}
}
impl Eq for OutCiphertext {}
impl ZcashSerialize for OutCiphertext {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), SerializationError> {
writer.write_all(&self.0[..])?;
Ok(())
}
}
impl ZcashDeserialize for OutCiphertext {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let mut bytes = [0; 80];
reader.read_exact(&mut bytes[..])?;
Ok(Self(bytes))
}
}
#[cfg(test)]
impl Arbitrary for OutCiphertext {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
(vec(any::<u8>(), 80))
.prop_map(|v| {
let mut bytes = [0; 80];
bytes.copy_from_slice(v.as_slice());
return Self(bytes);
})
.boxed()
}
type Strategy = BoxedStrategy<Self>;
}
#[cfg(test)]
proptest! {
#[test]
fn encrypted_ciphertext_roundtrip(ec in any::<EncryptedCiphertext>()) {
let mut data = Vec::new();
ec.zcash_serialize(&mut data).expect("EncryptedCiphertext should serialize");
let ec2 = EncryptedCiphertext::zcash_deserialize(&data[..]).expect("randomized EncryptedCiphertext should deserialize");
prop_assert_eq![ec, ec2];
}
#[test]
fn out_ciphertext_roundtrip(oc in any::<OutCiphertext>()) {
let mut data = Vec::new();
oc.zcash_serialize(&mut data).expect("OutCiphertext should serialize");
let oc2 = OutCiphertext::zcash_deserialize(&data[..]).expect("randomized OutCiphertext should deserialize");
prop_assert_eq![oc, oc2];
}
}