Zebra/zebra-chain/src/orchard/tree.rs

336 lines
11 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Note Commitment Trees.
//!
//! A note commitment tree is an incremental Merkle tree of fixed depth
//! used to store note commitments that Action
//! transfers produce. Just as the unspent transaction output set (UTXO
//! set) used in Bitcoin, it is used to express the existence of value and
//! the capability to spend it. However, unlike the UTXO set, it is not
//! the job of this tree to protect against double-spending, as it is
//! append-only.
//!
//! A root of a note commitment tree is associated with each treestate.
#![allow(clippy::unit_arg)]
#![allow(clippy::derive_hash_xor_eq)]
#![allow(dead_code)]
use std::{
cell::Cell,
convert::TryFrom,
fmt,
hash::{Hash, Hasher},
io,
};
use bitvec::prelude::*;
use halo2::{arithmetic::FieldExt, pasta::pallas};
use incrementalmerkletree::{bridgetree, Frontier};
use lazy_static::lazy_static;
use thiserror::Error;
use super::sinsemilla::*;
use crate::serialization::{
serde_helpers, ReadZcashExt, SerializationError, ZcashDeserialize, ZcashSerialize,
};
pub(super) const MERKLE_DEPTH: usize = 32;
/// MerkleCRH^Orchard Hash Function
///
/// Used to hash incremental Merkle tree hash values for Orchard.
///
/// MerkleCRH^Orchard: {0..MerkleDepth^Orchard 1} × P𝑥 × P𝑥 → P𝑥
///
/// MerkleCRH^Orchard(layer, left, right) := 0 if hash == ⊥; hash otherwise
///
/// where hash = SinsemillaHash("z.cash:Orchard-MerkleCRH", l || left || right),
/// l = I2LEBSP_10(MerkleDepth^Orchard 1 layer), and left, right, and
/// the output are the x-coordinates of Pallas affine points.
///
/// https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh
/// https://zips.z.cash/protocol/protocol.pdf#constants
fn merkle_crh_orchard(layer: u8, left: pallas::Base, right: pallas::Base) -> pallas::Base {
let mut s = bitvec![Lsb0, u8;];
// Prefix: l = I2LEBSP_10(MerkleDepth^Orchard 1 layer)
let l = MERKLE_DEPTH - 1 - layer as usize;
s.extend_from_bitslice(&BitArray::<Lsb0, _>::from([l, 0])[0..10]);
s.extend_from_bitslice(&BitArray::<Lsb0, _>::from(left.to_bytes())[0..255]);
s.extend_from_bitslice(&BitArray::<Lsb0, _>::from(right.to_bytes())[0..255]);
match sinsemilla_hash(b"z.cash:Orchard-MerkleCRH", &s) {
Some(h) => h,
None => pallas::Base::zero(),
}
}
lazy_static! {
/// List of "empty" Orchard note commitment nodes, one for each layer.
///
/// The list is indexed by the layer number (0: root; MERKLE_DEPTH: leaf).
///
/// https://zips.z.cash/protocol/protocol.pdf#constants
pub(super) static ref EMPTY_ROOTS: Vec<pallas::Base> = {
// The empty leaf node. This is layer 32.
let mut v = vec![NoteCommitmentTree::uncommitted()];
// Starting with layer 31 (the first internal layer, after the leaves),
// generate the empty roots up to layer 0, the root.
for layer in (0..MERKLE_DEPTH).rev()
{
// The vector is generated from the end, pushing new nodes to its beginning.
// For this reason, the layer below is v[0].
let next = merkle_crh_orchard(layer as u8, v[0], v[0]);
v.insert(0, next);
}
v
};
}
/// Orchard note commitment tree root node hash.
///
/// The root hash in LEBS2OSP256(rt) encoding of the Orchard note commitment
/// tree corresponding to the final Orchard treestate of this block. A root of a
/// note commitment tree is associated with each treestate.
#[derive(Clone, Copy, Default, Eq, PartialEq, Serialize, Deserialize)]
pub struct Root(#[serde(with = "serde_helpers::Base")] pub(crate) pallas::Base);
impl fmt::Debug for Root {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Root")
.field(&hex::encode(&self.0.to_bytes()))
.finish()
}
}
impl From<Root> for [u8; 32] {
fn from(root: Root) -> Self {
root.0.into()
}
}
impl From<&Root> for [u8; 32] {
fn from(root: &Root) -> Self {
(*root).into()
}
}
impl Hash for Root {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.to_bytes().hash(state)
}
}
impl TryFrom<[u8; 32]> for Root {
type Error = SerializationError;
fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
let possible_point = pallas::Base::from_bytes(&bytes);
if possible_point.is_some().into() {
Ok(Self(possible_point.unwrap()))
} else {
Err(SerializationError::Parse(
"Invalid pallas::Base value for Orchard note commitment tree root",
))
}
}
}
impl ZcashSerialize for Root {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
writer.write_all(&<[u8; 32]>::from(*self)[..])?;
Ok(())
}
}
impl ZcashDeserialize for Root {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
Self::try_from(reader.read_32_bytes()?)
}
}
/// A node of the Orchard Incremental Note Commitment Tree.
#[derive(Clone, Debug)]
struct Node(pallas::Base);
impl incrementalmerkletree::Hashable for Node {
fn empty_leaf() -> Self {
Self(NoteCommitmentTree::uncommitted())
}
/// Combine two nodes to generate a new node in the given level.
/// Level 0 is the layer above the leaves (layer 31).
/// Level 31 is the root (layer 0).
fn combine(level: incrementalmerkletree::Altitude, a: &Self, b: &Self) -> Self {
let layer = (MERKLE_DEPTH - 1) as u8 - u8::from(level);
Self(merkle_crh_orchard(layer, a.0, b.0))
}
/// Return the node for the level below the given level. (A quirk of the API)
fn empty_root(level: incrementalmerkletree::Altitude) -> Self {
let layer_below: usize = MERKLE_DEPTH - usize::from(level);
Self(EMPTY_ROOTS[layer_below])
}
}
impl From<pallas::Base> for Node {
fn from(x: pallas::Base) -> Self {
Node(x)
}
}
impl serde::Serialize for Node {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
self.0.to_bytes().serialize(serializer)
}
}
impl<'de> serde::Deserialize<'de> for Node {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let bytes = <[u8; 32]>::deserialize(deserializer)?;
Option::<pallas::Base>::from(pallas::Base::from_bytes(&bytes))
.map(Node)
.ok_or_else(|| serde::de::Error::custom("invalid Pallas field element"))
}
}
#[allow(dead_code, missing_docs)]
#[derive(Error, Debug, Clone, PartialEq, Eq)]
pub enum NoteCommitmentTreeError {
#[error("The note commitment tree is full")]
FullTree,
}
/// Orchard Incremental Note Commitment Tree
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct NoteCommitmentTree {
/// The tree represented as a Frontier.
///
/// A Frontier is a subset of the tree that allows to fully specify it.
/// It consists of nodes along the rightmost (newer) branch of the tree that
/// has non-empty nodes. Upper (near root) empty nodes of the branch are not
/// stored.
inner: bridgetree::Frontier<Node, { MERKLE_DEPTH as u8 }>,
/// A cached root of the tree.
///
/// Every time the root is computed by [`Self::root`] it is cached here,
/// and the cached value will be returned by [`Self::root`] until the tree is
/// changed by [`Self::append`]. This greatly increases performance
/// because it avoids recomputing the root when the tree does not change
/// between blocks. In the finalized state, the tree is read from
/// disk for every block processed, which would also require recomputing
/// the root even if it has not changed (note that the cached root is
/// serialized with the tree). This is particularly important since we decided
/// to instantiate the trees from the genesis block, for simplicity.
///
/// [`Cell`] offers interior mutability (it works even with a non-mutable
/// reference to the tree) but it prevents the tree (and anything that uses it)
/// from being shared between threads. If this ever becomes an issue we can
/// leave caching to the callers (which requires much more code), or replace
/// `Cell` with `Arc<Mutex<_>>` (and be careful of deadlocks and async code.)
cached_root: Cell<Option<Root>>,
}
impl NoteCommitmentTree {
/// Adds a note commitment x-coordinate to the tree.
///
/// The leaves of the tree are actually a base field element, the
/// x-coordinate of the commitment, the data that is actually stored on the
/// chain and input into the proof.
///
/// Returns an error if the tree is full.
pub fn append(&mut self, cm_x: pallas::Base) -> Result<(), NoteCommitmentTreeError> {
if self.inner.append(&cm_x.into()) {
// Invalidate cached root
self.cached_root.replace(None);
Ok(())
} else {
Err(NoteCommitmentTreeError::FullTree)
}
}
/// Returns the current root of the tree, used as an anchor in Orchard
/// shielded transactions.
pub fn root(&self) -> Root {
match self.cached_root.get() {
// Return cached root
Some(root) => root,
None => {
// Compute root and cache it
let root = Root(self.inner.root().0);
self.cached_root.replace(Some(root));
root
}
}
}
/// Get the Pallas-based Sinsemilla hash / root node of this merkle tree of
/// note commitments.
pub fn hash(&self) -> [u8; 32] {
self.root().into()
}
/// An as-yet unused Orchard note commitment tree leaf node.
///
/// Distinct for Orchard, a distinguished hash value of:
///
/// Uncommitted^Orchard = I2LEBSP_l_MerkleOrchard(2)
pub fn uncommitted() -> pallas::Base {
pallas::Base::one().double()
}
/// Count of note commitments added to the tree.
///
/// For Orchard, the tree is capped at 2^32.
pub fn count(&self) -> u64 {
self.inner
.position()
.map_or(0, |pos| usize::from(pos) as u64 + 1)
}
}
impl Default for NoteCommitmentTree {
fn default() -> Self {
Self {
inner: bridgetree::Frontier::new(),
cached_root: Default::default(),
}
}
}
impl Eq for NoteCommitmentTree {}
impl PartialEq for NoteCommitmentTree {
fn eq(&self, other: &Self) -> bool {
self.hash() == other.hash()
}
}
impl From<Vec<pallas::Base>> for NoteCommitmentTree {
/// Compute the tree from a whole bunch of note commitments at once.
fn from(values: Vec<pallas::Base>) -> Self {
let mut tree = Self::default();
if values.is_empty() {
return tree;
}
for cm_x in values {
let _ = tree.append(cm_x);
}
tree
}
}