Zebra/zebra-network/src/peer_set.rs

299 lines
10 KiB
Rust

//! A peer set whose size is dynamically determined by resource constraints.
// Portions of this submodule were adapted from tower-balance,
// which is (c) 2019 Tower Contributors (MIT licensed).
use std::{
net::SocketAddr,
pin::Pin,
sync::{Arc, Mutex},
};
use futures::{
channel::mpsc,
future::{self, Future, FutureExt},
sink::SinkExt,
stream::{FuturesUnordered, StreamExt},
};
use tokio::net::{TcpListener, TcpStream};
use tower::{
buffer::Buffer,
discover::{Change, ServiceStream},
Service, ServiceExt,
};
use tower_load::{peak_ewma::PeakEwmaDiscover, NoInstrument};
use tracing::Level;
use tracing_futures::Instrument;
use crate::{
peer::{HandshakeError, PeerClient, PeerConnector},
timestamp_collector::TimestampCollector,
AddressBook, BoxedStdError, Config, Request, Response,
};
mod candidate_set;
mod discover;
mod set;
mod unready_service;
use candidate_set::CandidateSet;
pub use discover::PeerDiscover;
pub use set::PeerSet;
/// A type alias for a boxed [`tower::Service`] used to process [`Request`]s into [`Response`]s.
pub type BoxedZebraService = Box<
dyn Service<
Request,
Response = Response,
Error = BoxedStdError,
Future = Pin<Box<dyn Future<Output = Result<Response, BoxedStdError>> + Send>>,
> + Send
+ 'static,
>;
type PeerChange = Result<Change<SocketAddr, PeerClient>, BoxedStdError>;
/// Initialize a peer set with the given `config`, forwarding peer requests to the `inbound_service`.
pub async fn init<S>(
config: Config,
inbound_service: S,
) -> (
impl Service<
Request,
Response = Response,
Error = BoxedStdError,
Future = impl Future<Output = Result<Response, BoxedStdError>> + Send,
> + Send
+ Clone
+ 'static,
Arc<Mutex<AddressBook>>,
)
where
S: Service<Request, Response = Response, Error = BoxedStdError> + Clone + Send + 'static,
S::Future: Send + 'static,
{
let (address_book, timestamp_collector) = TimestampCollector::spawn();
let peer_connector = Buffer::new(
PeerConnector::new(config.clone(), inbound_service, timestamp_collector),
1,
);
// Create an mpsc channel for peer changes, with a generous buffer.
let (peerset_tx, peerset_rx) = mpsc::channel::<PeerChange>(100);
// Create an mpsc channel for peerset demand signaling.
let (demand_tx, demand_rx) = mpsc::channel::<()>(100);
// Connect the rx end to a PeerSet, wrapping new peers in load instruments.
let mut peer_set = Buffer::new(
PeerSet::new(
PeakEwmaDiscover::new(
ServiceStream::new(
// ServiceStream interprets an error as stream termination,
// so discard any errored connections...
peerset_rx.filter(|result| future::ready(result.is_ok())),
),
config.ewma_default_rtt,
config.ewma_decay_time,
NoInstrument,
),
demand_tx,
),
config.peerset_request_buffer_size,
);
// Connect the tx end to the 3 peer sources:
// 1. Initial peers, specified in the config.
tokio::spawn(add_initial_peers(
config.initial_peers.clone(),
peer_connector.clone(),
peerset_tx.clone(),
));
// 2. Incoming peer connections, via a listener.
tokio::spawn(
listen(
config.listen_addr,
peer_connector.clone(),
peerset_tx.clone(),
)
.map(|result| {
if let Err(e) = result {
error!(%e);
}
}),
);
// 3. Outgoing peers we connect to in response to load.
let mut candidates = CandidateSet::new(address_book.clone(), peer_set.clone());
// We need to await candidates.update() here, because Zcashd only sends one
// `addr` message per connection, and if we only have one initial peer we
// need to ensure that its `addr` message is used by the crawler.
// XXX this should go in CandidateSet::new, but we need init() -> Result<_,_>
let _ = candidates.update().await;
info!("Sending initial request for peers");
tokio::spawn(
crawl_and_dial(demand_rx, candidates, peer_connector, peerset_tx).map(|result| {
if let Err(e) = result {
error!(%e);
}
}),
);
(peer_set, address_book)
}
/// Use the provided `peer_connector` to connect to `initial_peers`, then send
/// the results over `tx`.
#[instrument(skip(initial_peers, tx, peer_connector))]
async fn add_initial_peers<S>(
initial_peers: Vec<SocketAddr>,
peer_connector: S,
mut tx: mpsc::Sender<PeerChange>,
) where
S: Service<(TcpStream, SocketAddr), Response = PeerClient, Error = BoxedStdError> + Clone,
S::Future: Send + 'static,
{
info!(?initial_peers, "Connecting to initial peer set");
let mut handshakes = initial_peers
.into_iter()
.map(|addr| {
let mut pc = peer_connector.clone();
async move {
let stream = TcpStream::connect(addr).await?;
pc.ready().await?;
let client = pc.call((stream, addr)).await?;
Ok::<_, BoxedStdError>(Change::Insert(addr, client))
}
})
.collect::<FuturesUnordered<_>>();
while let Some(handshake_result) = handshakes.next().await {
let _ = tx.send(handshake_result).await;
}
}
/// Bind to `addr`, listen for peers using `peer_connector`, then send the
/// results over `tx`.
#[instrument(skip(tx, peer_connector))]
async fn listen<S>(
addr: SocketAddr,
mut peer_connector: S,
tx: mpsc::Sender<PeerChange>,
) -> Result<(), BoxedStdError>
where
S: Service<(TcpStream, SocketAddr), Response = PeerClient, Error = BoxedStdError> + Clone,
S::Future: Send + 'static,
{
let mut listener = TcpListener::bind(addr).await?;
loop {
if let Ok((tcp_stream, addr)) = listener.accept().await {
debug!(?addr, "got incoming connection");
peer_connector.ready().await?;
// Construct a handshake future but do not drive it yet....
let handshake = peer_connector.call((tcp_stream, addr));
// ... instead, spawn a new task to handle this connection
let mut tx2 = tx.clone();
tokio::spawn(async move {
if let Ok(client) = handshake.await {
let _ = tx2.send(Ok(Change::Insert(addr, client))).await;
}
});
}
}
}
/// Given a channel that signals a need for new peers, try to connect to a peer
/// and send the resulting `PeerClient` through a channel.
///
#[instrument(skip(demand_signal, candidates, peer_connector, success_tx))]
async fn crawl_and_dial<C, S>(
mut demand_signal: mpsc::Receiver<()>,
mut candidates: CandidateSet<S>,
peer_connector: C,
mut success_tx: mpsc::Sender<PeerChange>,
) -> Result<(), BoxedStdError>
where
C: Service<(TcpStream, SocketAddr), Response = PeerClient, Error = BoxedStdError> + Clone,
C::Future: Send + 'static,
S: Service<Request, Response = Response, Error = BoxedStdError>,
S::Future: Send + 'static,
{
// XXX this kind of boilerplate didn't exist before we made PeerConnector
// take (TcpStream, SocketAddr), which made it so that we could share code
// between inbound and outbound handshakes. Probably the cleanest way to
// make it go away again is to rename "Connector" to "Handshake" (since it
// is really responsible just for the handshake) and to have a "Connector"
// Service wrapper around "Handshake" that opens a TCP stream.
// We could also probably make the Handshake service `Clone` directly,
// which might be more efficient than using a Buffer wrapper.
use crate::types::MetaAddr;
use futures::TryFutureExt;
let try_connect = |candidate: MetaAddr| {
let mut pc = peer_connector.clone();
async move {
let stream = TcpStream::connect(candidate.addr).await?;
pc.ready().await?;
pc.call((stream, candidate.addr))
.await
.map(|client| Change::Insert(candidate.addr, client))
}
// Use map_err to tag failed connections with the MetaAddr,
// so they can be reported to the CandidateSet.
.map_err(move |_| candidate)
};
// On creation, we are likely to have very few peers, so try to get more
// connections quickly by concurrently connecting to a large number of
// candidates.
let mut handshakes = FuturesUnordered::new();
for _ in 0..50usize {
if let Some(candidate) = candidates.next() {
handshakes.push(try_connect(candidate))
}
}
while let Some(handshake) = handshakes.next().await {
match handshake {
Ok(change) => {
debug!("Successfully dialed new peer, sending to peerset");
success_tx.send(Ok(change)).await?;
}
Err(candidate) => {
debug!(?candidate.addr, "marking address as failed");
candidates.report_failed(candidate);
}
}
}
// XXX instead of just responding to demand, we could respond to demand *or*
// to a interval timer (to continuously grow the peer set).
while let Some(()) = demand_signal.next().await {
debug!("got demand signal from peer set, updating candidates");
candidates.update().await?;
loop {
let candidate = match candidates.next() {
Some(candidate) => candidate,
None => {
warn!("got demand for more peers but no available candidates");
break;
}
};
match try_connect(candidate).await {
Ok(change) => {
debug!("Successfully dialed new peer, sending to peerset");
success_tx.send(Ok(change)).await?;
break;
}
Err(candidate) => {
debug!(?candidate.addr, "marking address as failed");
candidates.report_failed(candidate);
}
}
}
}
Ok(())
}